organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-2,4,6-Triisopropyl-N-[2-(2-pyridylmethyleneamino)cvclohexvl]benzenesulfonamide acetonitrile hemisolvate

Cheng Wang^a and Jin-Cai Wu^b*

^aThe Second Affiliated Hospital of Lanzhou University, Lanzhou 730000, People's Republic of China, and ^bDepartment of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China

Correspondence e-mail: okinsen@yahoo.com.cn

Received 1 January 2007; accepted 11 August 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; Hatom completeness 97%; R factor = 0.062; wR factor = 0.216; data-to-parameter ratio = 18.4.

The title compound, C₂₇H₃₉N₃O₂S·0.5CH₃CN, a Schiff base ligand, was synthesized by the condensation of picolin-N-(2-aminocyclohexyl)-2,4,6-triisopropylaldehyde and benzenesulfonamide in ethanol. Crystals were grown from an acetonitrile solution. The cyclohexane ring has a chair conformation and the dihedral angle between the pyridine and benzene rings is 55.6°. The molecules form dimers via N- $H \cdots N$ hydrogen bonds.

Related literature

For related literature, see: Cabaret et al. (2004); Chamberlain et al. (1999); Endo et al. (1987).

Experimental

Crystal data C27H39N3O2S·0.5C2H3N $M_r = 488.70$

Tetragonal, $I4_1/a$ a = 21.9895 (17) Å c = 24.035 (3) Å V = 11622.0 (18) Å³ Z = 16Mo $K\alpha$ radiation

Data collection

Bruker SMART 1K CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2002) $T_{\min} = 0.769, T_{\max} = 1.000$ (expected range = 0.748 - 0.973)

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.062$ 313 parameters $wR(F^2) = 0.216$ H-atom parameters constrained S = 1.04 $\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.33 \text{ e } \text{\AA}^{-3}$ 5766 reflections

 $\mu = 0.14 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.063$

 $0.30 \times 0.28 \times 0.20$ mm

31641 measured reflections

5766 independent reflections

3108 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N3-H3A\cdots N1^{i}$	0.86	2.42	3.188 (4)	149
Symmetry code: (i) -	x - v + 1 - z			

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL.

Financial support from the National Natural Science Foundation of China (grant No. 20601011) is gratefully appreciated.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ER2029).

References

- Bruker (1999). SMART (Version 5.0) and SAINT (Version 4.0). Bruker AXS Inc., Madison, Wisconsin, USA.
- Cabaret, O. D., Vaca, B. M. & Bourissou, D. (2004). Chem. Rev. 104, 6147-6176.
- Chamberlain, B. M., Sun, Y., Hagadorn, J. R., Hemmesch, E. W., Young, V. G. Jr, Pink, M., Hillmyer, M. A. & Tolman, W. B. (1999). Macromolecules, 32. 2400-2402.
- Endo, M., Aida, T. & Inoue, S. (1987). Macromolecules, 20, 2982-2988.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

- Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.

Acta Cryst. (2007). E63, o4064 [doi:10.1107/S1600536807039918]

(E)-2,4,6-Triisopropyl-N-[2-(2-pyridylmethyleneamino)cyclohexyl]benzenesulfonamide acetonitrile hemisolvate

C. Wang and J.-C. Wu

Comment

In past two decade, significant advances have been made in polymerization of cyclic ester, such as $poly(\varepsilon$ -caprolactone) (Endo *et al.*, 1987), poly(lactide) (Chamberlain *et al.*, 1999). The title compound (I), is designed as catalyst ligand for polymerization of poly(lactide). This ligand is one charge bulky shiff base after deprotonation, this kind of ligand is very useful in the ring-opening polymerization of cyclic esters (Cabaret *et al.*, 2004). In the present study, the bulky shiff base ligand derived from the condensation of picolinaldehyde and *N*-(2-aminocyclohexyl)-2,4,6-triisopropyl benzenesulfonamide in ethanol, was synthesized for the investigation of its application in the Ring-Opening polymerization of cyclic esters.

The geometric parameters for (I) are normal (Fig. 1). The compound is a dimer with an intermolecular N3—H3A–N1 hydrogen bond (Fig. 2).

Experimental

5.5 mmol picolinaldehyde was added to a solution of 5 mmol *N*-(2-aminocyclohexyl)-2,4,6-triisopropyl benzenesulfonamide in 30 ml e thanol. After stirring at room temperature for 4 h, the yellow precipitate was filtrated and washed with 10 ml e thanol. This compound was dried in vacuum and crystals grown from a solution of the title compound in acetonitrile.

Refinement

H atoms were placed in calculated positions and refined using a riding model, with d(N-H) = 0.86 Å and $U_{iso}(H) = 1.2U_{eq}(N)$, d(C-H) = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for Csp^2 , d(C-H) = 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for the methylene groups, and d(C-H) = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for the methyl groups. The three H atoms of the acetonitrile solvate molecules were not located. The value of the Flack parameter is meaningless because of its large s.u. value thus the Friedel equivalents were merged in the final refinements.

Figures

Fig. 1. Displacement ellipsoid plot.

Fig. 2. Packing diagram.

 $({\it E})\mbox{-}2,\mbox{-}4,\mbox{6-Triisopropyl-N-[2- (2-pyridylmethyleneamino)cyclohexyl]} benzenesulfonamide acetonitrile hemisolvate$

Z = 16
$F_{000} = 4216$
$D_{\rm x} = 1.117 {\rm ~Mg~m}^{-3}$
Mo K α radiation $\lambda = 0.71073$ Å
Cell parameters from 6978 reflections
$\theta = 2.2 - 22.8^{\circ}$
$\mu = 0.14 \text{ mm}^{-1}$
T = 293 (2) K
Block, yellow
$0.30\times0.28\times0.20\ mm$

Data collection

Bruker SMART 1K CCD area-detector diffractometer	5766 independent reflections
Radiation source: fine-focus sealed tube	3108 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.063$
Detector resolution: 10 pixels mm ⁻¹	$\theta_{\text{max}} = 26.1^{\circ}$
T = 293(2) K	$\theta_{\min} = 1.9^{\circ}$
ϕ and ω scans	$h = -17 \rightarrow 27$
Absorption correction: multi-scan (SADABS; Sheldrick, 2002)	$k = -27 \rightarrow 26$
$T_{\min} = 0.769, T_{\max} = 1.000$	$l = -29 \rightarrow 29$
31641 measured reflections	

Refinement

Refinement on F^2

H-atom parameters constrained

Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.1113P)^2 + 3.0566P]$ where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.062$	$(\Delta/\sigma)_{max} < 0.001$
$wR(F^2) = 0.216$	$\Delta \rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$
<i>S</i> = 1.04	$\Delta \rho_{min} = -0.33 \text{ e } \text{\AA}^{-3}$
5766 reflections	Extinction correction: none
313 parameters	
Primary atom site location: structure-invariant direct methods	
Secondary atom site location: difference Fourier map	
Hydrogen site location: inferred from neighbouring	
sites	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.12749 (4)	0.60119 (4)	0.03742 (3)	0.0730 (3)
01	0.14047 (12)	0.57455 (12)	-0.01578 (8)	0.0999 (8)
O2	0.09863 (11)	0.65909 (10)	0.03769 (10)	0.0917 (7)
C1	-0.07243 (18)	0.68154 (17)	-0.01539 (14)	0.0931 (11)
H1	-0.0586	0.7005	0.0168	0.112*
N2	-0.03673 (11)	0.60214 (11)	0.07332 (10)	0.0693 (7)
N3	0.08473 (11)	0.55429 (11)	0.06978 (9)	0.0688 (6)
H3A	0.0798	0.5186	0.0559	0.083*
N4	0.0000	0.7500	0.2299 (5)	0.265 (6)
N1	-0.09302 (12)	0.59030 (12)	-0.06422 (11)	0.0794 (7)
C4	-0.11168 (15)	0.62558 (18)	-0.10696 (13)	0.0843 (9)
H4	-0.1257	0.6064	-0.1390	0.101*
C3	-0.11121 (16)	0.68721 (18)	-0.10611 (15)	0.0890 (10)
H3B	-0.1242	0.7093	-0.1369	0.107*
C2	-0.09163 (19)	0.71601 (18)	-0.05998 (16)	0.1019 (12)
H2	-0.0911	0.7583	-0.0582	0.122*
C5	-0.07375 (13)	0.61963 (14)	-0.01864 (12)	0.0687 (8)
C6	-0.05335 (13)	0.58042 (15)	0.02798 (12)	0.0715 (8)
H6A	-0.0530	0.5385	0.0232	0.086*
C7	-0.01480 (13)	0.56002 (14)	0.11595 (11)	0.0676 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H7A	-0.0233	0.5181	0.1046	0.081*
C8	-0.04702 (16)	0.57368 (19)	0.17042 (14)	0.0940 (11)
H8A	-0.0418	0.6163	0.1795	0.113*
H8B	-0.0902	0.5660	0.1661	0.113*
C9	-0.02260 (19)	0.5352 (2)	0.21751 (14)	0.1026 (12)
H9A	-0.0432	0.5458	0.2518	0.123*
H9B	-0.0304	0.4926	0.2098	0.123*
C10	0.0446 (2)	0.5451 (2)	0.22403 (13)	0.1036 (12)
H10A	0.0600	0.5187	0.2531	0.124*
H10B	0.0520	0.5869	0.2353	0.124*
C11	0.07834 (16)	0.53241 (18)	0.17040 (13)	0.0898 (10)
H11A	0.0752	0.4894	0.1618	0.108*
H11B	0.1210	0.5420	0.1754	0.108*
C12	0.05348 (13)	0.56906 (13)	0.12206 (11)	0.0633 (7)
H12A	0.0607	0.6122	0.1300	0.076*
C13	0.19802 (13)	0.60672 (14)	0.07480 (11)	0.0660 (7)
C14	0.24248 (16)	0.56126 (15)	0.06689 (13)	0.0758 (8)
C15	0.23114 (18)	0.50094 (16)	0.03670 (16)	0.0942 (11)
H15A	0.1873	0.4977	0.0298	0.113*
C16	0.2634 (3)	0.5001 (2)	-0.0199 (2)	0.160 (2)
H16A	0.2503	0.5343	-0.0416	0.240*
H16B	0.2536	0.4632	-0.0392	0.240*
H16C	0.3066	0.5023	-0.0144	0.240*
C17	0.2495 (2)	0.44733 (19)	0.0724 (3)	0.145 (2)
H17A	0.2279	0.4488	0.1070	0.217*
H17B	0.2925	0.4490	0.0794	0.217*
H17C	0.2399	0.4102	0.0533	0.217*
C18	0.29944 (17)	0.57050 (17)	0.08867 (15)	0.0882 (10)
H18A	0.3291	0.5413	0.0819	0.106*
C19	0.31504 (17)	0.62005 (19)	0.11959 (16)	0.0926 (10)
C20	0.3802 (2)	0.6297 (3)	0.1408 (3)	0.1416 (18)
H20A	0.3949	0.5879	0.1455	0.170*
C21	0.3848 (3)	0.6544 (3)	0.1970 (2)	0.174 (2)
H21A	0.4269	0.6584	0.2070	0.261*
H21B	0.3649	0.6276	0.2227	0.261*
H21C	0.3656	0.6937	0.1982	0.261*
C22	0.4194 (3)	0.6531 (5)	0.0965 (3)	0.241 (5)
H22A	0.4599	0.6586	0.1106	0.362*
H22B	0.4040	0.6914	0.0836	0.362*
H22C	0.4202	0.6247	0.0661	0.362*
C23	0.27044 (17)	0.66180 (17)	0.13025 (14)	0.0859 (10)
H23A	0.2799	0.6951	0.1525	0.103*
C24	0.21147 (15)	0.65686 (14)	0.10948 (12)	0.0742 (8)
C25	0.16786 (18)	0.70501 (17)	0.13004 (16)	0.0975 (11)
H25A	0.1272	0.6927	0.1178	0.117*
C26	0.1808 (2)	0.7662 (2)	0.1032 (2)	0.1426 (18)
H26A	0.1788	0.7623	0.0634	0.214*
H26B	0.2206	0.7798	0.1138	0.214*
H26C	0.1511	0.7953	0.1154	0.214*

C27	0.1664 (3)	0.7066 (3)	0.1933 (2)	0.168 (2)
H27A	0.1567	0.6668	0.2073	0.252*
H27B	0.1361	0.7350	0.2055	0.252*
H27C	0.2055	0.7188	0.2071	0.252*
C28	0.0000	0.7500	0.1224 (3)	0.1063 (17)
C29	0.0000	0.7500	0.1818 (6)	0.153 (3)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0865 (6)	0.0789 (5)	0.0537 (4)	0.0073 (4)	0.0018 (4)	0.0124 (4)
01	0.133 (2)	0.1216 (19)	0.0456 (12)	0.0107 (16)	0.0040 (12)	0.0053 (11)
02	0.1019 (16)	0.0725 (14)	0.1008 (17)	0.0140 (12)	-0.0035 (13)	0.0284 (12)
C1	0.123 (3)	0.082 (2)	0.074 (2)	0.002 (2)	-0.019 (2)	0.0050 (18)
N2	0.0696 (15)	0.0797 (16)	0.0586 (14)	-0.0029 (12)	-0.0122 (11)	0.0093 (12)
N3	0.0828 (16)	0.0666 (14)	0.0572 (13)	-0.0009 (12)	0.0009 (12)	0.0025 (11)
N4	0.251 (12)	0.356 (16)	0.188 (10)	-0.023 (10)	0.000	0.000
N1	0.0896 (18)	0.0865 (17)	0.0620 (15)	0.0000 (14)	-0.0183 (13)	0.0053 (13)
C4	0.092 (2)	0.103 (3)	0.0588 (19)	0.0096 (19)	-0.0131 (16)	0.0068 (17)
C3	0.094 (2)	0.100 (3)	0.073 (2)	0.016 (2)	-0.0032 (19)	0.026 (2)
C2	0.137 (3)	0.087 (2)	0.082 (2)	0.011 (2)	-0.022 (2)	0.010 (2)
C5	0.0682 (18)	0.079 (2)	0.0588 (17)	0.0029 (15)	-0.0073 (14)	0.0069 (14)
C6	0.0725 (19)	0.0752 (19)	0.0668 (19)	-0.0061 (15)	-0.0134 (15)	0.0092 (15)
C7	0.0730 (18)	0.0712 (18)	0.0586 (16)	-0.0110 (15)	-0.0134 (14)	0.0113 (14)
C8	0.083 (2)	0.122 (3)	0.077 (2)	-0.001 (2)	0.0104 (18)	0.026 (2)
C9	0.119 (3)	0.124 (3)	0.064 (2)	0.000 (2)	0.014 (2)	0.025 (2)
C10	0.129 (3)	0.132 (3)	0.0504 (18)	0.004 (3)	-0.0170 (19)	0.0176 (19)
C11	0.090 (2)	0.117 (3)	0.0625 (19)	0.016 (2)	-0.0151 (17)	0.0133 (18)
C12	0.0727 (18)	0.0670 (17)	0.0501 (15)	-0.0021 (14)	-0.0073 (13)	0.0026 (13)
C13	0.0754 (18)	0.0720 (18)	0.0506 (15)	0.0039 (15)	0.0152 (13)	0.0044 (13)
C14	0.082 (2)	0.077 (2)	0.0688 (18)	0.0065 (17)	0.0151 (16)	0.0061 (15)
C15	0.097 (2)	0.077 (2)	0.108 (3)	0.0118 (19)	0.024 (2)	-0.012 (2)
C16	0.190 (5)	0.142 (4)	0.147 (4)	-0.025 (4)	0.085 (4)	-0.058 (3)
C17	0.125 (4)	0.076 (3)	0.233 (6)	0.007 (2)	-0.018 (4)	0.014 (3)
C18	0.078 (2)	0.095 (3)	0.091 (2)	0.0136 (19)	0.0080 (19)	0.003 (2)
C19	0.083 (2)	0.105 (3)	0.090 (2)	-0.001 (2)	-0.0008 (19)	0.006 (2)
C20	0.101 (3)	0.174 (5)	0.149 (5)	-0.005 (3)	-0.021 (3)	-0.026 (4)
C21	0.163 (5)	0.246 (7)	0.114 (4)	-0.020 (5)	-0.046 (4)	0.013 (5)
C22	0.096 (4)	0.447 (14)	0.181 (7)	-0.063 (6)	0.010 (4)	-0.069 (8)
C23	0.089 (2)	0.094 (2)	0.075 (2)	-0.009 (2)	0.0057 (18)	-0.0062 (18)
C24	0.082 (2)	0.078 (2)	0.0624 (18)	0.0012 (16)	0.0182 (16)	0.0027 (15)
C25	0.092 (2)	0.095 (3)	0.105 (3)	0.000(2)	0.023 (2)	-0.026 (2)
C26	0.129 (4)	0.089 (3)	0.210 (5)	0.017 (3)	0.030 (4)	-0.009(3)
C27	0.181 (5)	0.198 (5)	0.125 (4)	0.016 (4)	0.055 (4)	-0.066 (4)
C28	0.115 (4)	0.099 (4)	0.105 (4)	0.019 (3)	0.000	0.000
C29	0.139(7)	0.137 (6)	0.184 (10)	-0.001 (5)	0.000	0.000

Geometric parameters (Å, °)

S1—O2	1.423 (2)	C13—C24	1.414 (4)
S1—O1	1.435 (2)	C14—C18	1.373 (5)
S1—N3	1.598 (2)	C14—C15	1.532 (5)
S1—C13	1.796 (3)	C15—C17	1.512 (6)
C1—C5	1.364 (5)	C15—C16	1.536 (5)
C1—C2	1.379 (5)	C15—H15A	0.9800
C1—H1	0.9300	C16—H16A	0.9600
N2—C6	1.245 (4)	C16—H16B	0.9600
N2—C7	1.463 (3)	C16—H16C	0.9600
N3—C12	1.469 (3)	C17—H17A	0.9600
N3—H3A	0.8600	С17—Н17В	0.9600
N4—C29	1.157 (12)	C17—H17C	0.9600
N1—C5	1.340 (4)	C18—C19	1.363 (5)
N1—C4	1.351 (4)	C18—H18A	0.9300
C4—C3	1.356 (5)	C19—C23	1.367 (5)
C4—H4	0.9300	C19—C20	1.535 (6)
C3—C2	1.347 (5)	C20—C21	1.460 (7)
С3—НЗВ	0.9300	C20—C22	1.465 (8)
С2—Н2	0.9300	C20—H20A	0.9800
C5—C6	1.483 (4)	C21—H21A	0.9600
С6—Н6А	0.9300	C21—H21B	0.9600
С7—С8	1.518 (4)	C21—H21C	0.9600
C7—C12	1.522 (4)	C22—H22A	0.9600
С7—Н7А	0.9800	C22—H22B	0.9600
C8—C9	1.512 (5)	C22—H22C	0.9600
C8—H8A	0.9700	C23—C24	1.394 (5)
C8—H8B	0.9700	C23—H23A	0.9300
C9—C10	1.503 (5)	C24—C25	1.512 (5)
С9—Н9А	0.9700	C25—C26	1.520 (6)
С9—Н9В	0.9700	C25—C27	1.522 (6)
C10-C11	1.513 (5)	С25—Н25А	0.9800
C10—H10A	0.9700	C26—H26A	0.9600
C10—H10B	0.9700	C26—H26B	0.9600
C11—C12	1.516 (4)	C26—H26C	0.9600
C11—H11A	0.9700	С27—Н27А	0.9600
C11—H11B	0.9700	С27—Н27В	0.9600
C12—H12A	0.9800	С27—Н27С	0.9600
C13—C14	1.411 (4)	C28—C29	1.427 (13)
02—\$1—01	117.26 (14)	C18—C14—C15	117.2 (3)
O2—S1—N3	108.23 (14)	C13—C14—C15	124.4 (3)
O1—S1—N3	106.69 (14)	C17—C15—C14	111.3 (4)
O2—S1—C13	108.81 (15)	C17—C15—C16	111.7 (4)
O1—S1—C13	107.55 (14)	C14—C15—C16	110.8 (3)
N3—S1—C13	107.96 (13)	C17—C15—H15A	107.6
C5—C1—C2	119.8 (3)	C14—C15—H15A	107.6
C5—C1—H1	120.1	C16—C15—H15A	107.6

C2—C1—H1	120.1	С15—С16—Н16А	109.5
C6—N2—C7	117.8 (3)	С15—С16—Н16В	109.5
C12—N3—S1	123.3 (2)	H16A—C16—H16B	109.5
C12—N3—H3A	118.3	C15—C16—H16C	109.5
S1—N3—H3A	118.3	H16A—C16—H16C	109.5
C5—N1—C4	116.2 (3)	H16B—C16—H16C	109.5
N1—C4—C3	124.1 (3)	C15—C17—H17A	109.5
N1—C4—H4	118.0	C15—C17—H17B	109.5
C3—C4—H4	118.0	H17A—C17—H17B	109.5
C2—C3—C4	119.0 (3)	C15—C17—H17C	109.5
С2—С3—Н3В	120.5	H17A—C17—H17C	109.5
С4—С3—Н3В	120.5	H17B—C17—H17C	109.5
C3—C2—C1	118.6 (4)	C19—C18—C14	123.8 (3)
С3—С2—Н2	120.7	C19—C18—H18A	118.1
C1—C2—H2	120.7	C14—C18—H18A	118.1
N1—C5—C1	122.3 (3)	C18—C19—C23	117.3 (3)
N1—C5—C6	115.7 (3)	C18—C19—C20	121.7 (4)
C1—C5—C6	122.0 (3)	C23—C19—C20	121.0 (4)
N2—C6—C5	121.8 (3)	C21—C20—C22	120.0 (5)
N2—C6—H6A	119.1	C21—C20—C19	115.1 (5)
С5—С6—Н6А	119.1	C22—C20—C19	110.9 (5)
N2—C7—C8	109.0 (3)	C21—C20—H20A	102.6
N2—C7—C12	108.1 (2)	С22—С20—Н20А	102.6
C8—C7—C12	110.6 (2)	C19—C20—H20A	102.6
N2—C7—H7A	109.7	C20-C21-H21A	109.5
С8—С7—Н7А	109.7	C20—C21—H21B	109.5
С12—С7—Н7А	109.7	H21A—C21—H21B	109.5
C9—C8—C7	111.6 (3)	C20—C21—H21C	109.5
С9—С8—Н8А	109.3	H21A—C21—H21C	109.5
С7—С8—Н8А	109.3	H21B—C21—H21C	109.5
С9—С8—Н8В	109.3	C20—C22—H22A	109.5
С7—С8—Н8В	109.3	C20—C22—H22B	109.5
H8A—C8—H8B	108.0	H22A—C22—H22B	109.5
C10—C9—C8	110.2 (3)	C20—C22—H22C	109.5
С10—С9—Н9А	109.6	H22A—C22—H22C	109.5
С8—С9—Н9А	109.6	H22B—C22—H22C	109.5
С10—С9—Н9В	109.6	C19—C23—C24	123.2 (3)
C8—C9—H9B	109.6	C19—C23—H23A	118.4
Н9А—С9—Н9В	108.1	C24—C23—H23A	118.4
C9—C10—C11	111.5 (3)	C23—C24—C13	117.8 (3)
C9—C10—H10A	109.3	C23—C24—C25	114.7 (3)
C11-C10-H10A	109.3	C13—C24—C25	127.3 (3)
С9—С10—Н10В	109.3	C24—C25—C26	111.3 (3)
C11-C10-H10B	109.3	C24—C25—C27	110.8 (4)
H10A—C10—H10B	108.0	C26—C25—C27	114.1 (4)
C10-C11-C12	112.2 (3)	C24—C25—H25A	106.7
C10-C11-H11A	109.2	C26—C25—H25A	106.7
C12—C11—H11A	109.2	C27—C25—H25A	106.7
C10-C11-H11B	109.2	С25—С26—Н26А	109.5

C12—C11—H11B	109.2		С25—С26—Н26В		109.5
H11A—C11—H11B	107.9		H26A—C26—H26B		109.5
N3—C12—C11	111.7 (2)		С25—С26—Н26С		109.5
N3—C12—C7	110.5 (2)		H26A—C26—H26C		109.5
C11—C12—C7	111.1 (2)		H26B—C26—H26C		109.5
N3—C12—H12A	107.8		С25—С27—Н27А		109.5
C11—C12—H12A	107.8		С25—С27—Н27В		109.5
C7—C12—H12A	107.8		H27A—C27—H27B		109.5
C14—C13—C24	119.1 (3)		С25—С27—Н27С		109.5
C14—C13—S1	118.9 (2)		H27A—C27—H27C		109.5
C24—C13—S1	121.9 (2)		H27B—C27—H27C		109.5
C18—C14—C13	118.4 (3)		N4-C29-C28		180.000 (3)
O2—S1—N3—C12	-42.8(3)		O2—S1—C13—C24		14.6 (3)
O1—S1—N3—C12	-169.8 (2)		O1—S1—C13—C24		142.6 (2)
C13—S1—N3—C12	74.8 (2)		N3—S1—C13—C24		-102.6 (2)
C5—N1—C4—C3	0.7 (5)		C24—C13—C14—C18		-6.5 (4)
N1—C4—C3—C2	-0.7 (6)		S1-C13-C14-C18		170.1 (2)
C4—C3—C2—C1	0.4 (6)		C24—C13—C14—C15		171.8 (3)
C5—C1—C2—C3	-0.2 (6)		S1-C13-C14-C15		-11.6 (4)
C4—N1—C5—C1	-0.5 (5)		C18—C14—C15—C17		52.0 (4)
C4—N1—C5—C6	-180.0 (3)		C13—C14—C15—C17		-126.4 (4)
C2-C1-C5-N1	0.3 (6)		C18—C14—C15—C16		-72.9 (5)
C2—C1—C5—C6	179.7 (3)		C13—C14—C15—C16		108.7 (4)
C7—N2—C6—C5	-177.3 (3)		C13—C14—C18—C19		2.8 (5)
N1—C5—C6—N2	-177.1 (3)		C15—C14—C18—C19		-175.6 (3)
C1C5	3.5 (5)		C14—C18—C19—C23		1.6 (6)
C6—N2—C7—C8	-130.4 (3)		C14—C18—C19—C20		-177.2 (4)
C6—N2—C7—C12	109.4 (3)		C18—C19—C20—C21		-140.9 (5)
N2-C7-C8-C9	-175.2 (3)		C23—C19—C20—C21		40.4 (7)
C12—C7—C8—C9	-56.6 (4)		C18—C19—C20—C22		78.8 (7)
C7—C8—C9—C10	57.6 (4)		C23—C19—C20—C22		-100.0 (6)
C8—C9—C10—C11	-56.1 (5)		C18—C19—C23—C24		-2.4 (5)
C9—C10—C11—C12	54.9 (5)		C20-C19-C23-C24		176.5 (4)
S1—N3—C12—C11	-112.8 (3)		C19—C23—C24—C13		-1.4 (5)
S1—N3—C12—C7	122.9 (2)		C19—C23—C24—C25		175.2 (3)
C10-C11-C12-N3	-177.4 (3)		C14—C13—C24—C23		5.8 (4)
C10—C11—C12—C7	-53.5 (4)		S1—C13—C24—C23		-170.7 (2)
N2-C7-C12-N3	-62.3 (3)		C14—C13—C24—C25		-170.3 (3)
C8—C7—C12—N3	178.5 (3)		S1—C13—C24—C25		13.2 (4)
N2—C7—C12—C11	173.1 (2)		C23—C24—C25—C26		73.3 (4)
C8—C7—C12—C11	54.0 (3)		C13—C24—C25—C26		-110.5 (4)
O2—S1—C13—C14	-161.9 (2)		C23—C24—C25—C27		-54.8 (5)
O1—S1—C13—C14	-34.0 (3)		C13—C24—C25—C27		121.4 (4)
N3—S1—C13—C14	80.8 (2)				
Hydrogen-bond geometry (Å, °)					
D—H···A		<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N3—H3A…N1 ⁱ		0.86	2.42	3.188 (4)	149

Symmetry codes: (i) -x, -y+1, -z.

Fig. 2

